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We propose an algorithm to estimate the Hurst exponent of high-dimensional fractals, based on a generalized
high-dimensional variance around a moving average low-pass filter. As working examples, we consider rough
surfaces generated by the random midpoint displacement and by the Cholesky-Levinson factorization algo-
rithms. The surrogate surfaces have Hurst exponents ranging from 0.1 to 0.9 with step 0.1, and different sizes.
The computational efficiency and the accuracy of the algorithm are also discussed.
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I. INTRODUCTION

The scaling properties of random curves and surfaces can
be quantified in terms of the Hurst exponent H, a parameter
defined in the framework of the fractional Brownian walks
introduced in �1�. A fractional Brownian function f�r� :Rd

→R, is characterized by a variance �H
2 ,

�H
2 = ��f�r + �� − f�r��2� � ���� with � = 2H , �1�

with r= �x1 ,x2 , . . . ,xd�, �= ��1 ,�2 , . . . ,�d�, and ���
=��1

2+�2
2+ ¯ +�d

2; a power spectrum SH,

SH � ���−� with � = d + 2H , �2�

with �= ��1 ,�2 , . . . ,�d� the angular frequency, ���
=��1

2+�2
2+ ¯ +�d

2; and a number of objects NH of charac-
teristic size � needed to cover the fractal,

NH � �−D with D = d + 1 − H , �3�

D being the fractal dimension of f�r�. The Hurst exponent
ranges from 0 to 1, taking the values H=0.5, H	0.5, and
H
0.5, respectively for uncorrelated, correlated, and anti-
correlated Brownian functions.

The application of fractal concepts, through the estimate
of H, has been proven useful in a variety of fields. For ex-
ample, in d=1, heartbeat intervals of healthy and sick hearts
are discriminated on the basis of the value of H �2,3�; the
stage of financial market development is related to the cor-
relation degree of return and volatility series �4�; coding and
noncoding regions of genomic sequences have different cor-
relation degrees �5�; and climate models are validated by
analyzing long-term correlation in atmospheric and oceano-
graphic series �6,7�. In d�2 fractal measures are used to
model and quantify stress induced morphological transfor-
mation �8�; isotropic and anisotropic fracture surfaces
�9–13�; static friction between materials dominated by hard
core interactions �14�; diffusion �15,16� and transport �17,18�
in porous and composite materials; mass fractal features in
wet or dried gels �19� and in physiological organs �e.g., lung�
�20�; hydrophobicity of surfaces with hierarchic structure un-
dergoing natural selection mechanism �21� and solubility of
nanoparticles �22�; and digital elevation models �23� and
slope fits of planetary surfaces �24�.

A number of fractal quantification methods—based on
Eqs. �1�–�3� or on variants of these relationships—such as
rescaled range analysis �R /S�, detrended fluctuation analysis

�DFA�, detrending moving average analysis �DMA�, and
spectral analysis, have been thus proposed to accomplish ac-
curate and fast estimates of H in order to investigate corre-
lations at different scales in d=1. A comparatively small
number of methods able to capture spatial correlations, op-
erating in d�2, have been proposed so far �25–32�. This
work is addressed to develop an algorithm to estimate the
Hurst exponent of high-dimensional fractals and thus is in-
tended to capture scaling and correlation properties over
space. The proposed method is based on a generalized high-
dimensional variance of the fractional Brownian function
around a moving average. In Sec. II, we report the relation-
ships holding for fractals with arbitrary dimension. It is ar-
gued that the implementation can be carried out in directed
or isotropic mode. We show that the detrending moving av-
erage �DMA� method �30–32� is recovered for d=1. In Sec.
III, the feasibility of the technique is proven by implement-
ing the algorithm on rough surfaces—with different size N1
�N2 and Hurst exponent H—generated by the random mid-
point displacement �RMD� and by the Cholesky-Levinson
factorization �CLF� methods �33,34�. The generalized vari-
ance is estimated over subarrays n1�n2 with different size
�“scales”� and then averaged over the whole fractal domain
N1�N2. This feature reduces the bias effects due to nonsta-
tionarity with an overall increase of accuracy—compared to
the two-point correlation function, whose average is calcu-
lated over all the fractal. Furthermore—compared to the two-
point correlation function, whose implementation is carried
out along one-dimensional lines �e.g., for the fracture prob-
lem, the two-point correlation functions are measured along
the crack propagation direction and the perpendicular one�,
the present technique is carried out over d-dimensional struc-
tures �e.g., squares in d=2�. In Sec. IV, we discuss the accu-
racy and range of applicability of the method.

II. METHOD

In order to implement the algorithm, the generalized vari-
ance �DMA

2 is introduced as follows:

�DMA
2 =

1

N 	
i1=n1−m1

N1−m1

	
i2=n2−m2

N2−m2

¯ 	
id=nd−md

Nd−md

�f�i1,i2, . . . ,id�

− f̃ n1,n2,. . .,nd
�i1,i2, . . . ,id��2, �4�

where f�i1 , i2 , . . . , id�= f�i� is a fractional Brownian function
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defined over a discrete d-dimensional domain, with maxi-
mum sizes N1 ,N2 , . . . ,Nd. It is i1=1 ,2 , . . . ,N1, i2
=1 ,2 , . . . ,N2 , . . ., id=1,2 , . . . ,Nd. n= �n1 ,n2 , . . . ,nd� defines
the subarrays 
d of the fractal domain with maximum values
n1 max=max
n1�, n2 max=max
n2� , . . .. nd max=max
nd�; m1

=int�n1�1�, m2=int�n2�2� , . . ., md=int�nd�d� and �1, �2, . . .�d

are parameters ranging from 0 to 1; N= �N1−n1 max��N2

−n2 max�¯ �Nd−nd max�. The function f̃ n1,n2,. . .,nd
�i1 , i2 , . . . , id�

= f̃ is given by

f̃ n1,n2,. . .,nd
�i1,i2, . . . ,id�

=
1

n1n2 ¯ nd
	

k1=−m1

n1−1−m1

	
k2=−m2

n2−1−m2

¯

� 	
kd=−md

nd−1−md

f�i1 − k1,i2 − k2, . . . ,id − kd� , �5�

which is an average of f calculated over the subarrays 
d.
Equations �4� and �5� are defined for any value of
n1 ,n2 , . . . ,nd and for any shape of the subarrays, however, it
is preferable to choose subarrays with n1=n2=¯ · =nd to
avoid spurious directionality in the results. The generalized
variance �DMA

2 varies as ��n1
2+n2

2+ ¯ +nd
2�2H as a conse-

quence of the property �1� of the fractional Brownian func-
tions.

Upon variation of the parameters �1 ,�2 , . . . ,�d in the
range �0,1�, the indexes i1 , i2 , . . . , id and k1 ,k2 , . . . ,kd of the
sums in Eqs. �4� and �5� are accordingly set within 
d. In
particular, �i1 , i2 , . . . , id� coincides, respectively, with �a� one
of the vertices of 
d for �1=�2= ¯ =�d=0 and �1=�2= ¯

=�d=1 or �b� the center of 
d for �1=�2= ¯ =�d=1/2. It is
worthy of note that the choice �1=�2= ¯ =�d=1/2 corre-
sponds to the isotropic implementation of the algorithm,
while �1=�2= ¯ =�d=0 and �1=�2= ¯ =�d=1 correspond
to the directed implementation. For example, in d=2, the
isotropic implementation implies that the variance defined by

Eq. �4� is referred to a moving average f̃ calculated over
squares n1�n2 whose center is �i1 , i2�. Conversely, the di-

rected implementation implies that the function f̃ is calcu-
lated over squares n1�n2 with one of the vertices in �i1 , i2�.
The directed mode is of interest to estimate H in fractals with
preferential growth direction, e.g., biological tissues �lung�,
epitaxial layers, and crack propagation in fracture �aniso-
tropic fractals�. If the fractal is isotropic and the accuracy is
a priority, the parameters �1 ,�2 , . . . ,�d should be preferably
taken equal to 1/2 to achieve the most precise estimate of H.
The dependence of the algorithm on � for d=1 has been
discussed in �32�.

In order to calculate the Hurst exponent, the algorithm is
implemented through the following steps. The moving aver-

age f̃ is calculated for different subarrays 
d, by varying
n1 ,n2 , . . . ,nd from 2 to the maximum values
n1 max,n2 max, . . . ,nd max. The values n1 max,n2 max, . . . ,nd max
depend on the maximum size of the fractal domain. In order
to minimize the saturation effects due to finite size, it should
be n1 max�N1; n2 max�N2 ; . . . ;nd max�Nd. These constraints

will be further clarified in Sec. III, where the algorithm is
implemented over fractal surfaces with different sizes. For
each subarray 
d, the corresponding value of �DMA

2 is calcu-
lated and finally plotted on log-log axes.

To elucidate the way the algorithm works, in the follow-
ing we consider its implementation for d=1 and d=2. The
case d=1 reduces to the detrending moving average �DMA�
method already used for long-range correlated time series
�30–32�.

One-dimensional case. By posing d=1 in Eq. �4�, one
obtains

�DMA
2 =

1

N1 − n1 max
	

i1=n1−m1

N1−m1

�f�i1� − f̃ n1
�i1��2, �6�

where N1 is the length of the sequence, n1 is the sliding
window, and n1 max=max
n1��N1. The quantity m1

=int�n1�1� is the integer part of n1�1 and �1 is a parameter
ranging from 0 to 1. The relationship �6� defines a general-
ized variance of the sequence f�i1� with respect to the func-

tion f̃ n1
�i1� as follows:

f̃ n1
�i1� =

1

n1
	

k1=−m1

n1−1−m1

f�i1 − k1� , �7�

which is the moving average of f�i1� over each sliding win-

dow of length n1. The moving average f̃ n1
�i1� is calculated

for different values of the window n1, ranging from 2 to the
maximum value n1 max. The variance �DMA

2 is then calculated
according to Eq. �6� and plotted as a function of n1 on log-
log axes. The plot is a straight line, as expected for a power-
law dependence of �DMA

2 on n1 as follows:

�DMA
2 � n1

2H. �8�

Equation �8� allows one to estimate the scaling exponent H
of the series f�i1�. Upon variation of the parameter �1 in the

range �0,1�, the index k1 in f̃ n1
�i1� is accordingly set within

the window n1. In particular, �1=0 corresponds to the aver-
age fn1

�i1� over all the points to the left of i1 within the
window n1; �1=1 corresponds to the average fn1

�i1� over all
the points to the right of i1 within the window n1; �1= 1

2
corresponds to the average fn1

�i1� with the reference point in
the center of the window n1.

Two-dimensional case. For d=2, the generalized variance
defined by Eq. �4� writes

�DMA
2 =

1

�N1 − n1 max��N2 − n2 max�

� 	
i1=n1−m1

N1−m1

	
i2=n2−m2

N2−m2

�f�i1,i2� − f̃ n1,n2
�i1,i2��2, �9�

with f̃ n1,n2
�i1 , i2� given by
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f̃ n1,n2
�i1,i2� =

1

n1n2
	

k1=−m1

n1−1−m1

	
k2=−m2

n2−1−m2

f�i1 − k1,i2 − k2� . �10�

The average f̃ is calculated over subarrays with different size
n1�n2. The next step is the calculation of the difference

f�i1 , i2�− f̃ n1,n2
�i1 , i2� for each subarray n1�n2. A log-log plot

of �DMA
2 ,

�DMA
2 � ��n1

2 + n2
2�2H � sH �11�

as a function of s=n1
2+n2

2, yields a straight line with slope H.
Depending upon the values of the parameters �1 and �2,

entering the quantities m1=int�n1�1� and m2=int�n2�2� in
Eqs. �9� and �10�, the position of �k1 ,k2� and �i1 , i2� can be
varied within each subarray. �i1 , i2� coincides with a vertex of
the subarray if �i� �1=0, �2=0; �ii� �1=0, �2=1; �iii� �1=1,
�2=0; and �iv� �1=1, �2=1 �directed implementation�. The
choice �1=�2=1/2 corresponds to take the point �i1 , i2� co-
inciding with the center of each subarray n1�n2 �isotropic
implementation� �41�.

III. RESULTS

In order to test feasibility and robustness of the proposed
method, synthetic rough surfaces with assigned Hurst expo-
nents have been generated by the random midpoint displace-
ment �RMD� and by the Cholesky-Levinson factorization
�CLF� algorithms �33,34�. The widespread use of the RMD
algorithm is based on the trade-off of its fast, simple, and
efficient implementation to the limited accuracy, especially
for H�0.5 and H�0.5. Conversely, the Cholesky-Levinson
factorization algorithm is one of the most accurate tech-
niques to generate 1D and 2D fractional Brownian functions,
at the expense of a more complex implementation structure
�42�.

In Fig. 1, the log-log plots of �DMA
2 as a function of s are

shown for the synthetic fractal surfaces generated by the
RMD �circles� and by the CLF method �squares�. The sur-
faces have Hurst exponents Hin ranging from 0.1 to 0.9 with
step 0.1. The domain sizes are, respectively, N1�N2=256
�256 �a�, N1�N2=1024�1024 �b�, and N1�N2=4096
�4096 �c�. The dashed lines show the behavior that should
be exhibited by variances varying exactly as sHin over the
entire range of scales. The plots of �DMA

2 as a function s are
in good agreement with the behavior expected on the basis of
Eq. �11�. The quality of the fits is higher for the surfaces
generated by the CLF method, confirming that the RMD al-
gorithm synthesizes less accurate fractals. By comparing the
results of the simulation �symbols� to the straight lines cor-
responding to full linearity over the whole range �dashed�,
deviations from the full linearity can be observed especially
for the small surfaces at the extremes of the scale. A plot of
the slopes for the fractal surfaces generated by the CLF al-
gorithm is shown in Fig. 2 for different sizes of the fractal
domain. A detailed discussion of the origin of the deviations
at low and large scales is reported in the Sec. IV.

Finally, we show three examples of digital images cur-
rently mapped to fractal surfaces with reference to the color
intensity, i.e., to the level of red, green, and blue �RGB�. The

Hurst exponents estimated by the proposed method are, re-
spectively, H=0.1 �a�, H=0.5 �b�, and H=0.9 �c� for the
images in Fig. 3.

IV. DISCUSSION

The proposed algorithm is characterized by short execu-
tion time and ease of implementation. By considering the

case d=2, the function f̃ n1,n2
�i1 , i2� is indeed simply obtained

by summing the values of f�i1 , i2� over each subarray n1

�n2. Then the sum is updated at each step by adding the last
and discarding the first row �column� of each sliding array
n1�n2. For higher dimensions, the sum is updated at each

FIG. 1. �Color online� Log-log plot of �DMA
2 for fractal surfaces,

respectively, with size N1�N2=256�256 �a�, N1�N2=1024
�1024 �b�, and N1�N2=4096�4096 �c�. The data refer to fractal
surfaces generated by the RMD �black circles� and by the CLF
�blue squares� methods. The Hurst exponent Hin—input of the
RMD and CLF algorithms—varies from 0.1 to 0.9 with step 0.1.
The results correspond to the isotropic implementation, i.e., with
the parameters �1=�2=1/2 in the Eq. �9�. The dashed lines repre-
sent the behavior expected for full linearity, i.e., the log-log plot of
curves varying as sHin. It is worthy of note that the CLF results are
much closer to the full-linear behavior compared to the RMD ones.
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step by adding and discarding a d−1-dimensional set of each
array n1�n2� ¯ �nd. The algorithm does not use arbitrary
parameters, the computation simply relying on averages of f .
We will now argue on the origin of the deviations at small
and at large scales.

Deviations occurring at large scales. The deviations from
the linearity at large scales, leading to the saturation of the
�DMA

2 values, are due to finite size effects. The small surfaces
do not contain enough data to make the evaluation of the
scaling law over the subarrays statistically meaningful. By
comparing the data in Figs. 1�a�–1�c�, one can note that the
saturation effect reduces upon increasing the size N1�N2 of
the fractal surface. The finite size effects become negligible
when the conditions n1 max�N1; n2 max�N2 ; . . . ;nd max�Nd

are fulfilled.
Deviations occurring at small scales. The deviations oc-

curring at low scales are related to the departure of the low-
pass filter from the ideality. This problem also occurs with
one-dimensional fractals �time series� resulting in the quite
generally reported overestimation of H in anticorrelated sig-
nals and underestimation of H in correlated signals �35–39�.
We will discuss the origin of these deviations by means of
the filter transfer function HT��� �40�. The algorithm is
based on a generalized variance of the function f with re-

spect to f̃ . The function f̃ is the output of a low-pass filter
driven by f , with impulse response a box-car function. In the

Appendix, the transfer function HT��� of f̃ is explicitly cal-
culated and shown in Fig. 4 for d=2. For an ideal low-pass
filter, the transfer function should be one or zero, respec-
tively, at frequencies lower or higher than the cutoff fre-
quency. However, in real low-pass filters, at frequencies
lower than the cutoff frequency, all the components of the
signal suffer some attenuation but �=0. The cutoff frequen-
cies of HT��� are �i=� /�i, i.e., the first zeroes of the func-
tions sin �i�i /�i�i in the Eq. �A4�. Moreover, in real filters,
at frequencies higher than � /�i, due to the presence of the
sidelobes, components of the signals lying in the bands
�� /�i ,2� /�i� ; �2� /�i ,3� /�i� ; . . .., are not fully filtered out.

As a result, the function f̃ contains �a� less components with
frequency lower than �i=� /�i and �b� more components
with frequency higher than �i=� /�i compared to what
would be expected with an ideal low-pass filter. The lack of
low-frequency components depends on the central lobe,
while the excess of high-frequency components depends on
the sidelobes. The excess of high-frequency components re-

sults in the decrease of the difference f − f̃ , i.e., in the de-
crease of �DMA

2 and, finally, in the increase of the slope of the
log-log plot. Conversely, the lack of low-frequency compo-

FIG. 2. �Color online� Plot of the values of H obtained by linear
fit of the data shown in Figs. 1�a�–1�c� obtained by implementing
the proposed algorithm on the fractal surfaces generated by the
Cholesky-Levinson factorization method. The dashed line repre-
sents the ideal behavior: H=Hin.

FIG. 3. �Color online�. Cloudy sky images, respectively, with
Hurst exponent H=0.1 �a�, H=0.5 �b�, and H=0.9 �c�. Such hetero-
geneous surfaces can be represented as fractals by mapping their
color intensity in terms of RGB content.

FIG. 4. �Color online� Plot of the transfer function
HT��1 ,�2�.
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nents results in the increase of the difference f − f̃ , i.e., in the
increase of �DMA

2 and, finally, in the decrease of the slope of
the log-log plot. The two effects are more relevant with
smaller values of the scales, when the filter nonideality is
greater. Moreover, as one can deduce from Eqs. �2� and �A6�,
the effect of the sidelobes dominates in high-frequency rich
fractals with H
0.5, while the effect of the central lobe is
dominant in low-frequency rich fractals with H	0.5.

In order to gain further insight in the above theoretical
arguments, we report in Table I the slopes HI, HII, and HIII of
the curves �squares� plotted in Fig. 1�b� over different
ranges. The slopes have been calculated by linear fit, respec-
tively, over the ranges 10�s�100 �HI�, 10�s�1000 �HII�,
and 10�s�10000 �HIII�. The relative errors �H= �H
−Hin� /Hin are given, respectively, in the third, fifth, and sev-
enth columns. The slope HI is greater than the expected value
Hin. The slope HII is overestimated for H=0.1 and H=0.2
and underestimated for H	0.2. The slope HIII is underesti-
mated since the effects of the finite size of the fractal domain
play a dominant role.

We address the question if the artifacts due to the filter
nonideality described above might be corrected somehow. In
the remaining of this section, we will thus consider the use of
windows whose general effect is to increase the width of the
central lobe while reducing those of the sidelobes of the
function HT��� �a detailed description of these methods can
be found in �40��. By restricting our discussion to the present
technique, the correction is performed by using the following
variant of the relationship �5�:

f̃ n1,n2,. . .,nd

� �i1,i2, . . . ,id�= �1 − ��fn1,n2,. . .,nd
�i1,i2, . . . ,id�

+� f̃ n1,n2,. . .,nd
�i1 − 1,i2 − 1, . . . ,id − 1� ,

�12�

where �=n1n2 , . . . ,nd / ��n1+1��n2+1�¯ �nd+1��. Equation
�12� reduces for d=1 to the exponentially weighted moving
average �EWMA�. In practice, the difference between Eq. �5�
and Eq. �12� is that the function f̃� places more importance to
the data around the point i1 , i2 , . . . , id. This is achieved by
assigning to the function a weight �1−��, while all the other

values are summed together and weighted by �. In Fig. 5, we
show the ratio �DMA

2 /sHin obtained by implementing the al-

gorithm, respectively, with the function f̃ �solid lines� and f̃�

�dashed lines� in the range 10�s�100. To avoid the overlap
in the scaled variance obtained for different values of Hin, the
�DMA

2 /sHin has been shifted. The plots are shown in logarith-
mic scales to allow the correction by direct comparison with
the data plotted in log scales in Fig. 1. The ratio �DMA

2 /sHin is
noticeably closer to a constant when the implementation is

performed with f̃�, with a corresponding reduction of two
orders of magnitude in the relative error �HI of the slope HI.

V. CONCLUSION

We have put forward an algorithm to estimate the Hurst
exponent of fractals with arbitrary dimension, based on the
high-dimensional generalized variance �DMA

2 defined by Eq.
�4�.

The methods currently used to estimate the Hurst expo-
nent of high-dimensional fractals are based on: �i� 1-d two-
point correlation and structure functions operated along dif-

TABLE I. Slopes HI, HII, HIII, and relative errors �HI, �HII, �HIII of the curves plotted in Fig. 1�b�
�squares� with N1�N2=1024�1024. The slopes have been calculated by linear fit, respectively, over the
ranges 10�s�100 �HI�, 10�s�1000 �HII�, and 10�s�10000 �HIII�.

Hin HI �HI HII �HII HIII �HIII

0.1 0.1346 +3.46�10−1 0.1073 +7.30�10−2 0.0718 −2.822�10−1

0.2 0.2272 +1.36�10−1 0.2050 +2.50�10−2 0.1700 −1.500�10−1

0.3 0.3233 +7.77�10−2 0.2995 −1.67�10−3 0.2716 −9.467�10−2

0.4 0.4205 +5.12�10−2 0.3970 −7.50�10−3 0.3691 −7.725�10−2

0.5 0.5178 +3.56�10−2 0.4973 −5.40�10−3 0.4752 −4.960�10−2

0.6 0.6171 +2.85�10−2 0.5973 −4.50�10−3 0.5617 −6.383�10−2

0.7 0.7185 +2.64�10−2 0.6956 −6.29�10−3 0.6770 −3.286�10−2

0.8 0.8207 +2.58�10−2 0.7999 −1.25�10−4 0.7659 −4.263�10−2

0.9 0.9253 +2.81�10−2 0.8999 −1.11�10−4 0.8679 −3.567�10−2

FIG. 5. Plot of the function �DMA
2 /sHin, respectively, with f̃ de-

fined by the Eq. �4� �solid lines� and f̃� defined by the Eq. �12�
�dashed lines�. The data refer to fractal surfaces generated by the
CLF algorithm with N1�N2=1024�1024. It can be noted that the
deviations from the constant behavior at small scales are reduced

with f̃� implying a corresponding reduction of the relative error �HI

in the slope HI.
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ferent directions, and �ii� high-d Fourier and wavelet
transforms �9–13,29�. The advantage of the methods �i� is the
ease of implementation. Their drawback is the limited accu-
racy due to biases and nonstationarities, being these func-
tions are calculated over the entire fractal domain. The meth-
ods �ii� are more accurate, however, their implementation is
complicated especially for data set with limited extension.
The generalized variance �DMA

2 is scaled, meaning that it is
calculated over subarrays of the whole fractal domain by
means of the function f̃ . The scales are set by the size of the
subarrays n1�n2�¯ . �nd. Therefore, the proposed
method exhibits at the same time �a� ease of implementation,
being based on a variancelike approach and �b� high accu-
racy, being calculated over scaled subarrays rather than on
the whole fractal domain.

A further important feature of the proposed algorithm is
that it can be implemented “isotropically” or in “directed”
mode to accomplish estimates of H in fractals having pref-
erential growth direction, e.g., biological tissues, epitaxial
layers, or in crack propagation in fracture. The isotropic
implementation is obtained by taking �1=�2= ¯ =�d=1/2 in
Eq. �4�. This choice implies that the reference point
�i1 , i2 , . . . , id� of the moving average lies in the center of each

subarray n1�n2� ¯ �nd and thus f̃ is calculated by sum-
ming the values of f around �i1 , i2 , . . . , id�. Conversely, to
implement the algorithm in a preferential direction �directed
implementation�, the reference point must be coincident with
one of the extremes of the segment n1, or with one of the
vertices of the square grid n1�n2 or of the d-dimensional
array n1�n2� ¯ �nd. The directed implementation can be
performed by choosing, for example, �1=�2= ¯ =�d=0.

Further generalizations of the proposed method can be
envisaged for application to the analysis of time-dependent
spatial correlations in d�2.

APPENDIX: TRANSFER FUNCTION OF f̃

The function f̃ , defined by Eq. �5�, corresponds to the
discrete form of the integral as follows:

f̃�x1,x2, . . . ,xd� =
1

�1�2 ¯ �d



x1−�1

x1

dx1�

� 

x2−�2

x2

dx2� ¯ 

xd−�d

xd

dxd�f�x1�,x2�, . . . ,xd�� ,

�A1�

where for the sake of simplicity we have considered the case

�1=�2= , . . . , =�d=0. Equation �A1� can be rewritten as a
convolution integral as follows:

f̃�x1,x2, . . . ,xd� =
1

�1�2 ¯ �d



−�

�

dx1
*U� x1

*

�1
�


−�

�

dx2
*U� x2

*

�2
�¯

� 

−�

�

dxd
*U� xd

*

�d
� f�x1 − x1

*,x2 − x2
*, . . . ,xd

− xd
*� , �A2�

with the convolution kernels given by the boxcar function as
follows:

U�xi
*/�i� = �1 for 0 
 x*/�i 
 1

0 elsewhere.
�

The transfer function can be calculated as follows:

HT��1,�2, . . . ,�d� =
1

�1�2 ¯ �d



0

�1

dx1

0

�2

dx2 ¯

� 

0

�d

dxd exp�− i2���1x1 + �2x2 + ¯

+ �dxd�� �A3�

that can be written as

HT��1,�2, . . . ,�d� = �
i=1

d
sin �i�i

�i�i
�A4�

that is thus d times the function sin �i�i /�i�i.

The Fourier transform F̃ of the function f̃ can be obtained
by means of the following relationship:

F̃��1,�2, . . . ,�d� = HT��1,�2, . . . ,�d�F��1,�2, . . . �d� ,

�A5�

where F��1 ,�2 , . . . ,�d� is the Fourier transform of the func-

tion f�x1 ,x2 , . . . ,xd�. The power spectrum S̃ of the function f̃
is given by

S̃��1,�2, . . . ,�d� = �HT��1,�2, . . . ,�d��2S��1,�2, . . . ,�d� ,

�A6�

where S��1 ,�2 , . . . ,�d� is the power spectrum of the func-
tion f�x1 ,x2 , . . . ,xd�.
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